- Take any four-digit number, using at least two different digits. (Leading zeros are allowed.)
- Arrange the digits in ascending and then in descending order to get two four-digit numbers, adding leading zeros if necessary.
- Subtract the smaller number from the bigger number.
- Go back to step 2.
- 5432 – 2345 = 3087
- 8730 – 0378 = 8352
- 8532 – 2358 = 6174
- 2111 – 1112 = 0999
- 9990 – 0999 = 8991 (rather than 999 – 999 = 0)
- 9981 – 1899 = 8082
- 8820 – 0288 = 8532
- 8532 – 2358 = 6174
- 9831 – 1389 = 8442
- 8442 – 2448 = 5994
- 9954 – 4599 = 5355
- 5553 – 3555 = 1998
- 9981 – 1899 = 8082
- 8820 – 0288 = 8532 (rather than 882 – 288 = 594)
- 8532 – 2358 = 6174
495 is the equivalent constant for three-digit numbers. For five-digit numbers and above, there is no single equivalent constant; for each digit length the routine may terminate at one of several fixed values or may enter one of several loops instead.[4]
See also
References
- ^ Mysterious number 6174
- ^ Kaprekar DR (1955). "An Interesting Property of the Number 6174". Scripta Mathematica 15: 244–245.
- ^ Kaprekar DR (1980). "On Kaprekar Numbers". Journal of Recreational Mathematics 13 (2): 81–82.
- ^ a b Weisstein, Eric W., "Kaprekar Routine" from MathWorld.
No comments:
Post a Comment